Since his early research on deep earthquakes, Vedran Lekic has repeatedly developed new ways of analyzing and modeling seismic data, leading to improved understanding of Earth’s large-scale inner strucutre.
For his work, the Seismological Society of America (SSA) has honored the 31 year-old lekic with its Charles F. Richter Early Career Award, which honors outstanding contributions to the goals of the Society by a member early in her or his career. He received the award at the SSA Annual Meeting, 30 April, 2014 in Anchorage, Alaska.
While he was a doctoral student with Barbara Romanowicz at the University of California, Berkeley, Lekic created a new global seismic velocity model by developing a hybrid method for extracting the information containted in full waveforms without the need for commonly used approximations. Lekic’s method made practicable very accurate modeling of waveform data, a task that would ordinarily require extraordinary computer time, resulting in higher-resolution images of the Earth’s mantle structure, as well as some surprises.
Lekic’s postdoctoral research, with Karen Fischer at Brown University, tackled an imaging challenge on the regional scale: using the conversion of shear (S) to compressional (P) waves to image the bottom of the North American plate across Southern California. The resulting images mapped variations in plate thickness at unprecendented resolution and showed that thickness decreased abruptly within regions undergoing rifting, providing a new constraint for understanding a process that shapes continents.
Lekic has authored 15 papers, covering the range of science: from global and regional seismology through planetary sciences. His breadth of research also includes contributions to the new field of neutrino geoscience, which explores subatomic particles (geo-neutrinos) emanating from the decay of radioactive elements (uranium and thorium) deep within Earth’s interior. Lekic and colleague Edwin Kite systematically explored how observations of geo-neutrinos – which have the potential to map out the distribution of heat-producing elements within the Earth – can be related to different hypotheses for the origin of large low shear velocity provinces that dominate lower mantle struchtre.
Lekic earned a bachelor’s degree in astronomy and astrophysics and Earth and Planetary Sciences from Harvard University and a doctoral degree in Earth and Planetary Sciences from the University of California, Berkeley. In 2010-11, he was a National Science Foundation Earth Sciences Postdoctoral Fellow at Brown University.