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Abstract

The association of earthquake arrivals becomes non-trivial as arrival detection methods
become more sensitive, and earthquake rates are high. In challenging cases, earthquake
arrivals across a seismic network from several sources may overlap in time, false arrivals
may be detected, and all arrivals may be of unknown phase (e.g., P/S). We propose an
explicit method to associate and locate earthquake arrivals applicable to such situations.
To do so, we use a pattern detection metric based on the principle of reverse-time migra-
tion to reveal “candidate” sources, followed by a clustering and linear integer optimization
routine to determine the associations and the minimum number of sources necessary to
explain the data. We apply our technique to Northern Chile over 2007-2017, increasing
the number of earthquake detections compared with the CSN catalog by ∼ 1.5 million,
lowering the magnitude of completion from ∼ 2.75 to ∼ 1.65.

Introduction

Many seismic techniques have been developed to improve the detectability of earthquake
arrivals from continuous time-series [1, 2, 3, 4]. However in practical cases, after detections
have been made, determining the actual associations across a network and the correct number
of sources producing the arrivals can still be ambiguous. We propose a solution using first-
principles, based on the idea of reverse-time migration (i.e. backprojection). We apply our
method to real data, and design it to handle:

• Unknown number of sources in any time window
• Possible false arrivals
• Uncertain phase arrivals
• Uncertainties in velocity model

The Association Problem and Reverse-Time Migration
(RTM)

(Sources)

(Recievers)

Figure 1: Schematic of multiple sources producing a complicated set of arrivals (top). Observed unassociated
set of arrivals (bl). True association of arrivals - the target “solution” (br)

The principle of RTM is that when arrivals are “played” backwards in time into the Earth
they should constructively interfere at the original source coordinate (and source origin time).
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Figure 2: The forward (blue solid line) and “backward” (red dashed line) wavefields for one earthquake (left).
The equivalent time migration procedure in the time domain. Arrivals (blue), Migrated waveforms (red), relative
“move-out” vector (purple line). (right)

Method (Pattern Detection)

Our technique uses the principle of RTM to detect when known move-out vectors from real
source locations occur in the time-domain. Rather than “backproject” to all points in space,
we assemble a sparse set of “move-out vectors” which span all possible move-out vectors
(in the sense of “nearest neighbor” distance), and run a continuous-time pattern detection
routine to determine when/if any template move-out vector occurs. The “template” move-
out vectors are obtained from the Self-Organizing Map algorithm [5].
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Figure 3: Map view of IPOC network (Northern Chile) and surrounding regions partitioned by nearest move-out
vector template. Chilean coast (red line), trench (purple line). (left). Corresponding move-out templates of P
(green), S (red) waves, with +/- 0.5 sigma of all real move-out vectors assigned to each template (right)

We compute continuous time “fitness” (i.e. likelihood of occurrence) of all templates with
the following metric:

Ck(t) = n∑
i=1

[m(i)∑
j=1

s∑
r=1

1
s
exp(−(t− (τij − wr

k(i)))2

2(σ2 + f (τij, wr
k(i))2)

)]⊥ (1)

for τij arrivals indicating jth arrival of ith station, and wr
k(i) being the ith station entry of kth

template with phase r. f denotes an uncertainty term proportional to arrival uncertainty
and travel time uncertainty, and σ is the intrinsic “resolution” of the scan.

Method (Clustering and Linear Integer Optimization)

All times whereCk(t) exceeds a threshold (γ) are treated as candidate source times. However,
backprojection “coherency” is a necessary, but not sufficient condition for being a true source.
We reduce the over-complete set of candidate sources by clustering similar sources, and then
running a constrained linear integer optimization problem which enforces several important
constraints, while maximizing the ability to “explain” the most arrivals with the least number
of sources necessary. To achieve these goals, we construct an undirected graph g with edge
weights defined by all (candidate source)-(arrival) pair connectivity values. Connectivity
values are directly obtained from the interior terms in equation (1) for all candidate source
times picked in Ck(t). Spectral Clustering is used to split the large (sparse) adjacency matrix
of g into sub-blocks containing sources of strong “similarity”. Sub-matrices are then passed
to the “Competitive Assignment” step, which yields the final result.
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Figure 4: An example of the source-arrival adjacency matrix, and its characteristic block diagonal structure.
Red rectangles mark regions grouped by spectral clustering (left). A schematic of the “competitive assignment”
method to determine optimal source-arrival assignments, and the resulting output graph, which satisfies listed
constraints (right)

Application and Results

We apply our method to Northern Chile seismicity recorded on the IPOC network between
2007 - 2017. Our objective in this study was to reduce the magnitude of completion and
improve our understanding of seismicity in this region. We apply our method to a large
set of (unknown) phase arrival time measurements obtained with our Network Coherency
Method (NCM) picking algorithm [2]. We use ∼ 800 template move-out vectors (of P and
S waves), and set sig = 3 sec, γ = 4.5, source cost = 5. We detect and catalog on average
500 events a day, resulting in ∼ 1.8 million detections over this time interval. We estimate
a magnitude of completion of ∼ 1.65 (Figure 6).
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Figure 5: An example set of detections on a sequence of five earthquakes. Predicted arrival phases marked P
wave (green), S wave (red). Vertical red bars denote arrival time picks.

Results

Figure 6: Figure caption

Nunc tempus venenatis facilisis. Curabitur suscipit consequat eros non porttitor. Sed a
massa dolor, id ornare enim:

Treatments Response 1 Response 2
Treatment 1 0.0003262 0.562
Treatment 2 0.0015681 0.910
Treatment 3 0.0009271 0.296

Table 1: Table caption
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Catalog Comparisons

(%) theirs detected in 
our catalog

(%) ours detected in 
their catalog

USGS

CSN

Bloch et al., 
(2014)

98.4

99.4

88.5

0.35

1.27

0.77
(2010/6 - 2012/2)

(2010/6 - 2016/6)

(2007/01 - 2017/4)

we note catalog comparisons are preliminary; 
further analysis must be done to verify these results

Gutenberg-Richter Curves

Figure 7: Gutenberg-Richter plots for three catalogs (USGS, CSN, and our own, NCM + AA), are shown.
Approximate magnitudes of completion denoted by dashed vertical lines (left). Percentage of pair-wise matching
events between our catalog and several others are given (right)

Conclusions

We have developed an automated technique to process arrival time data and determine the
optimum number of sources, phase assignments, and associations across a network. We
have found our technique to be effective on synthetic and real data cases, and believe it
may complement existing arrival detection algorithms. Several aspects of the method are
designed to be computationally efficient, and robust to various types of noise and uncertainty,
making it a practical algorithm for general use. Recently, we have applied this method to
Northern Chile, in an attempt to gain more insight into seismic processes occurring at this
highly active subduction zone. Future work will assess what we observe in the catalog, and
validate our detections with more scrutiny.
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