

Local damage and stress field evolution before and after laboratory fault slip

G. Kwiatek^{1,2} ● B. Orlecka-Sikora³ ● P. Martínez-Garzón¹ ●
 T. H. W. Goebel⁴ ● G. Dresen^{1,5} ● <u>M. Bohnhoff^{1,2}</u>

 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Section 4.2 Geomechanics & Rheology
 2. Free University Berlin
 3. Institute Geophysics Polish Academy of Sciences
 4. University California Santa Cruz
 5. University of Potsdam

Motivation

- Natural faults display structural variations, segmentation and fault roughness that all affect the stress field on the fault surface and surrounding medium, and earthquake source parameters.
- Mapping the dynamic behaviour of the different involved parameters (moment tensor, stress field) is a challenge but important towards fully understanding earthquake nucleation and propagation (> has implications for earthquake forecasting, assessment of seismic hazard and risk).

This study...

- ...provides a framework for detailed characterization of the spatiotemporal evolution of damage and stress field on the rupture plane before and after activation.
- We perform laboratory stick-slip experiments under full acoustic monitoring and subsequent waveform analysis.

Experimental Setup

- → Since the seminal work of Brace & Byerlee in the 60s laboratory stick-slip experiment are considered an analog of large natural earthquakes.
- We use triaxial stick-slip experiments on Westerly Granite samples to derive an improved understanding of pre-/co- and postseismic processes.
- Seismicity is monitored with 16 AE sensors at full focal coverage, location accuracy ±2mm.

GFZ rock deformation lab

Experiment and Data Acquisition

AE Seismic Activity Prior to Fault Activation - Foreshocks

For each AE event we determine source parameters: Hypocenter, magnitude, full seismic moment tensor.

AE Activity Immediately Before and After (Re-)Activation

200 > 0 seconds BEFORE slip

Source and Statistical Parameters

- The AE source parameter are used to calculate a total of 25 different other parameters as spatiotemporal proxies for damage and stress evolution.
- These were then projected on the fault surface.
- The key parameters are discussed in the following:

Source and Statistical Parameters

- The AE source parameter are used to calculate a total of 25 different other parameters as spatiotemporal proxies for damage and stress evolution.
- These were then projected on the fault surface.
- The key parameters are discussed in the following:

From hypocenter locations and magnitude we calculated the spatial distributions of energy release and b-value on the fault surface.

- Spatial AE energy release:
 Clear variations with spots indicating asperities.
 - _{1.4} **b-value:**

b-value

- Clear variations indicating
- 1.2 changes in stress or/and damage.

80.

Fault-plane variability allows to map variations of fracture and stress on the fault plane.

So

- Stress tensor inversion from fault plane solutions using the MSATSI software (Martinez-Garzon et al., SRL, 2014).
- Fracture alignement with local stress field.
- Variations of local stress field orientation throughout rupture plane.

Testing Different Parameters for Similarity of Their Distributions

Is one distribution similar to the other one?

E.g. is the b-value a measure of damage or stress?

STRESS? DAMAGE? **b**-value AE energy release 2 Scaled shear traction 1.8 1.6 or 1.4 1.2 Equivalent Parameter #1 distribution **CDF #1** Mantel test Parameter #1 Equivalent

CDF #2

Bootstrap

resampling

Equivalent Dimension Hyperspace > Lasocki, 2014, GJI

distribution

Testing Different Parameters for Similarity of Their Distributions

- Surface distributions of two parameters were compared for the same time interval to check whether correlations between parameters are statisticially significant.
- The statistical test procedure relies on standardization of spatial distributions of two different parameters into a common (probabilistic) domain using the ,Equivalent dimension hyperspace method' (Lasocki et al., GJI, 2014).
- The level of similarty between surface distributions was then tested using the bootstrap resampling and mantel test.

Testing Individual Parameters for Temporal Similarity

Do distributions for one parameter differ with time (before and after activation)?

LACSC-SSA Meeting, Miami, May 14- 17th 2018

Microcrack orientation heterogeneity

Plunge of maximum stress axis

ocal stress orientation Local stress orientation

- Significant portions of volumetric deformation reflecting material compaction before fault activation.
- Dominantly shear faulting after fault activation.

Local stress orientation vary from global stress High

- Before activation: Local stress orientation on fault surface generally similar to global stress. Local variations.
- After activation: Clear change in stress field orientation in areas of high postseismic energy release.

Microcrack orientation heterogeneity

High

No

90

80

70

60 is

20

10

0

⁰ Blunge of

Summary

- We used AE data to characterize the spatio-temporal evolution of local damage and local stress field before and after fault activation during laboratory stick-slip experiments.
- Our mapping revealed a complexity of the rupture nucleation and a post-slip stress redistribution.
- Pre-slip is characterized by significant localized volumetric deformation occuring on uniformly oriented microfractures at local asperities. The local stress field is homogeneous but rotated strongly wrt far-field stress orientation.
- Post-slip deformation is characterized by dominantly shear deformation with highly varying orientation of microcracks under significantly lowered traction. The local stress field is closer to the far-field stress orientation.
- Fault plane roughness decreased between subsequent slips indicated by reduced fault plane variability and a more uniform stress field. This might reflect a smoothening of the fault plane.

Outlook

- Tracking temporal changes of stress and damage parameters leading to slip
 - Slip precursors
 Forecasting.
- Effect of fault surface complexity on nucleation patch and magnitude of mainshock.
 - ▶ Damaging potential (stress drop, magnitude → Mmax).
- Structural evolution of fault plane and long-term evolution of local stress state at the fault plane.
 - Implications for long-term seismic hazard.

Thank you for your attention! Questions?

email: kwiatek@gfz-potsdam.de

Goebel, T.H.W., Kwiatek, G., Becker, T.W., Brodsky, E.E. and G. Dresen (**2017**). What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. **Geology 45 (9), 815-818.**

Kwiatek, G., Goebel, T., and G. Dresen (2014). Seismic moment tensor and b value variations over successive seismic cycles in laboratory stick-slip experiments. Geophys. Res. Lett. 41.

