Remote explosive volcanic eruption detection, location, and characterization using the EarthScope Transportable Array in Alaska.

Richard Sanderson¹, Robin Matoza¹, David Fee^{2,3}, Matt Haney^{3,4}, John Lyons^{3,4}

¹ UC Santa Barbara, ² UAF/AVO, ³ AVO/USGS

Photo: Dave Withrow (NOAA/Fisheries)

Alaska stations:

228 infrasound sensors within 2500 km of Bogoslof:

EarthScope Transportable Array (TA) (new) 75%

Alaska Volcano Observatory (AVO) 14%

Alaska Regional Network (AK) 4%

International Monitoring System (IM) 3.5%

University of Alaska Fairbanks (DLL) 3% *

IRIS/IDA (II) 0.5%

Motivation:

 Advance the capability of acoustic early warning systems of volcanic eruptions.

- **2.** Quantify explosive volcanism with dense spatial wavefield sampling.
- **3.** Assess the potential contribution of large sensor networks to volcano monitoring.

Network size	Coverage	Sensitivity, accuracy
Local	Low	High
Global	High	Low
Regional	Medium	Medium

(d) 3rd nearest station, 59 planned IMS stations

Above figure from: Matoza, et al., 2017

Outline:

- Data sources 🖌
- Looking for events
- Detecting events
- Locating events
- Challenges and future work

Pre-processing steps:

- Filter (0.5 0.8 Hz)
- Envelopes
- Decimate to 0.5 Hz
- Smoothing (moving avg.)
- Apply wind mask (0.03-0.08 Hz)
- Normalize each trace

Reverse Time Migration with linear stacking:

(range/time)

Sort 4D array => 3D array (x,y,t)

Detecting events: "Detector

Stack at each grid node

"Detector functions" (Walker et al., 2010)

Walker et al., 2010: Maxima of stacks at t

Detector functions:

7 events: 4 volcanic, 3 non-volcanic

Date/time (UTC)

Time-slice - January 4th eruption:

Assessing detection algorithms:

Receiver Operating Characteristic (ROC) curves:

Find optimal True Positive (TP) rate to False Positive (FP) rate.

For detector function (DF), vary detection threshold (T) and calc.:

TP - eruption, DF > T
FN - eruption, DF < T
FP - no eruption, DF > T
TN - no eruption, DF < T</pre>

Can compare algorithms with ROCs.

Challenges:

1. Network geometry:

Symptom – detection smearing Impact - location accuracy Solution – station coverage, methods with directionality

2. Noise:

Symptom – waveform clarity Impact – missing events Solution – coherence, wind reduction

3. Atmospheric structure:

Symptom – phase alignment Impact – location accuracy Solution – cross-correlation, atmospheric ray tracing

Synthetic detector functions: source 60 s boxcar

Swimming artifacts:

Location moving with time

Location tracking for 5400 samples covering: 2017-09-26T00:00:00 to 2017-09-26T02:59:56

Challenges:

1. Network geometry:

Symptom – detection clarity Impact - location accuracy Solution – station coverage, methods with directionality

2. Noise:

Symptom – waveform clarity Impact – missing events Solution – wind reduction, spectral coherence

3 . Atmospheric structure:

Symptom – phase alignment Impact – location accuracy Solution – cross-correlation, atmospheric ray tracing

Infrasound coherence weighting:

[After: Ichihara et al., 2012; Matoza and Fee, 2014; Fee et al., 2017; McKee et al., 2018.]

50000

60000

Few ground-coupled air-waves per event

Coherence from non-volcanic events

No clear pattern with distance

Unpredictable use for stacking/RTM

Summary:

Aim –

Develop a basic event detection and location algorithm that exploits infrasound detected on a dense regional array.

Results -

- Infrasound is recorded across the TA depending on conditions
- Simple grid search method can identify events with high TP/FP rate
- Noise suppression improves signal to noise ratios
- Detection clarity/accuracy sensitive to network coverage of source as well as signal phase alignment

Future work/improvements:

- 1. Further exploring noise reduction, e.g., coherence weighting, block thresholding (*Langston and Mousavi, 2018*).
- 2. Compensate for atmospheric structure/arrival times using AVO-G2S (*lezzi et al., 2018*).
- 3. Alternate back-projection strategies which may reducing 'swimming' (*Meng et al., 2012; Koper et al., 2012*).
- 4. Incorporating methods that give directional information, e.g., frequencywavenumber analysis, array meshes (*de Groot-Hedlin and Hedlin, 2015*).

EXTRA SLIDES

Reverse time migration (RTM):

Hedlin and Walker, 2013

Back-projection methods:

Time-domain:

- Linear stacking
- Nth-root stacking
- Semblance
- F-stacking
- Correlation stacking
- Coherence stacking
- STA/LTA stacking

Frequency domain:

- Spectral STA/LTA stacking
- Frequency-wavenumber (F-K) analysis
 - Multitaper MUSIC (multiple signal classification)

Combined approaches :

 AELUMA (Automated Event Location Using a Mesh of Arrays)

Cleveland

Bogoslof

Atmosphere's velocity structure:

Atmospheric structure: branching

Network geometry

Close-up DF example (Cleveland)

Location tracking for 5400 samples covering: 2017-09-26T00:00:00 to 2017-09-26T02:59:56

Synthetic example (at Cleveland)

