

Robustness of κ_0 measurement: insight from a site in the low-to-moderate seismicity context of southeastern France

Presented by
Vincent PERRON

Perron et al. (2017) "Robustness of kappa (κ) measurement in low-to-moderate seismicity areas: insight from a site-specific study in Provence, France". *Bull. Seimol. Soc. Am.* **107**, 2272–2292. doi:10.1785/0120160374

ETH

UNIVERSITÉ

Grenoble

Alpes

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Acceleration FAS Individual κ_r κ_r represent the attenuation along the $e^{-\pi \kappa_r f}$ Record path between the For a given earthquake located at epicentral distance R_e , κ_r is define by the relation: source and the $A(f) = A_0 e^{-\pi \kappa_r f}, \quad f_1 < f < f_2$ recording site fmax Acceleration (t, f) Source No influence of ω^{-2} model the source f 2ini 10-2 4 Hz Site Main assumptions f_c Frequency $e^{-\pi \kappa_r f}$ ttenuation independent Acceleration FAS (m.s⁻¹.Hz^{-1/2}) PathPath attenuation Source parameter S-waves Noise R_e Adapted from Berge-Negligible $\overset{\mathfrak{H}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}{\overset{\mathfrak{g}}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}}{\overset{\mathfrak{g}}}{\overset{\mathfrak{g}}}}}}$ ficationThierry et al. (2017) 10⁻⁶ site amplification ^{Sn Id} 10 10 15 20 25 30 35 40 Frequency (Hz) f_0

frequency (Hz)

The site component κ_0

 κ_0 correspond to the site component of κ_r such as:

$$\kappa_r(R_e) = \frac{\kappa_0}{\kappa_0} + \frac{m_\kappa}{\kappa_0} \cdot R_e$$

 $\kappa_r(s)$

Х

Х

Approaches to measure κ_r

κ_{AS} : Anderson and Hough (1984)

- High frequency measurement $> f_c$
- *M_L*>3

κ_{DS} : Biasi and Smith (2001)

Low frequency measurement < f_c
 M_L<1,5

Use of κ_0 :

- Ground Motion Prediction Equations (GMPEs)
- Stochastic modeling
- Host-to-target adjustments
- etc.

II. The study site

The study site

- Seismicity: low-to-moderate
- Recording period: 2^{1/2} years
- Instruments: 7 velocimeters et 2 accelerometers
- About 70 earthquakes usable for κ_r measurements

Seismology of the Americas • Miami, Florida – 14-17 May 2018 – © CEA/IRSN/ISTerre

• "AS O "DS

10¹

10²

≥ 3

10⁰

Comparison between κ_{AS} and κ_{DS}

 κ_{AS} : Anderson and Hough (1984)

 κ_{DS} : Biasi and Smith (2001)

Frequency-dependence assumption

- The frequency dependence can explain a parts of the discrepancy between m_{k_AS} and m_{k_DS}
- No quantifiable effect between κ_{0_AS} and κ_{0_DS}

■ Negligible amplification influence assumption

- Non-negligible influence on *κ*₀ at rock sites
- Very probable and unpredictable influence on κ_0 at soil sites

Seismology of the Americas • Miami, Florida – 14-17 May 2018 – © CEA/IRSN/ISTerre

231 inverted Fourier source

spectra from the L'Aquila sequence

V. Conclusions

Conclusions

- Consistent results between κ_{0_AS} and κ_{0_DS} at \longrightarrow rock site, and in agreement with the literature
- For low-to-moderate seismicity areas, the *K_{DS}* approach is a promising alternative to the very uncertain V_{S30}-*K*₀ correlations

- Very probable frequency-dependence of κ
- Noticeable influence of the amplification on the average values of κ_0 , even for rock sites
- Despite *k*₀ is a site parameter, the uncertainty associated to its measurement is clearly and strongly dominated by the source term

Vincent PERRON

vincent.perron@sed.ethz.ch

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

References

Anderson JG, Hough SE (1984) A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull Seimol Soc Am 74:1969–1993

Berge-Thierry C, Svay A, Laurendeau A, et al (2017) Toward an integrated seismic risk assessment for nuclear safety improving current French methodologies through the SINAPS@ research project. Nucl Eng Des 323:185–201. doi: <u>10.1016/j.nucengdes.2016.07.004</u>

Biasi GP, Smith KD (2001) Site effects for seismic monitoring stations in the vicinity of Yucca Mountain. Nevada

Bindi D, Spallarossa D, Pacor F (2017) Between-event and between-station variability observed in the Fourier and response spectra domains: comparison with seismological models. Geophys J Int 210:1092–1104. doi: 10.1093/gij/ggx217

Kennett BLN (1974) Reflections, rays, and reverberations. Bull Seimol Soc Am 64:1685–1696

Ktenidou O-J, Cotton F, Abrahamson NA, Anderson JG (2014) Taxonomy of Kappa: a review of definitions and estimation approaches targeted to applications. Seismol Res Let 85:135–146. doi: 10.1785/0220130027

Perron V, Hollender F, Bard P-Y, et al (2017) Robustness of kappa (κ) measurement in low-tomoderate seismicity areas: insight from a site-specific study in Provence, France. Bull Seimol Soc Am 107:2272–2292. doi: <u>10.1785/0120160374</u>

Woessner J, Laurentiu D, Giardini D, et al (2015) The 2013 European Seismic Hazard Model: key components and results. Bull Earthquake Eng 13:3553–3596. doi: <u>10.1007/s10518-015-9795-1</u>

■ Negligible amplification influence assumption

