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For a given earthquake located at epicentral distance 𝑅𝑒, 𝜅𝑟 is define by the relation:

𝐴 𝑓 = 𝐴0𝑒
−𝜋𝜅𝑟𝑓 , 𝑓1 < 𝑓 < 𝑓2

𝑒−𝜋𝜅𝑟𝑓
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Path

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑡, 𝑓)

𝑅𝑒

Site

Source

Adapted from Berge-

Thierry et al. (2017)



𝜅0 𝑚𝜅

I. kappa?

▌ The site component 𝜅0
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𝜅𝑟(𝑠)

𝑅𝑒(𝑘𝑚)0

𝜅0 correspond to the site component of 𝜅𝑟 such as: 

𝜅𝑟(𝑅𝑒) = 𝜅0 +𝑚𝜅 ∙ 𝑅𝑒

x
x

x
x

The higher 𝜅0, the higher 

the site attenuation, the 

softer the site?

Correlation between 𝑉𝑆30 and 𝜅0?

Source : Ktenidou et al. (2014)
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𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

𝜅𝐴𝑆 : Anderson and Hough (1984)
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▪ High frequency measurement >𝑓𝑐
▪ 𝑀𝐿>3

▪ Low frequency measurement <𝑓𝑐
▪ 𝑀𝐿<1,5
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I. kappa?

▌ Approaches to measure 𝜅𝑟

𝑓1 𝑓2 𝑓1 𝑓2
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I. kappa?

▌ Use of 𝜅0:
▪ Ground Motion Prediction Equations (GMPEs)

▪ Stochastic modeling

▪ Host-to-target adjustments

▪ etc.

▌ Difficulties:
▪ Good quality dataset required at the site of interest -> 𝜅0 often deduce from the very uncertain 𝜅0-𝑉𝑠30 correlation

▪ Measurement subject to the operator subjectivity and to large uncertainties

▪ Possible influence of the site amplification and of the source spectrum shape on 𝜅0 measurement

▪ Controversial frequency independence assumption of 𝜅0

▌ Goal:
▪ Evaluate the applicability of reliable determination of site-specific 𝜅0 from a limited dataset acquired in southeastern 

France

▪ Compare 𝜅0 obtain from the acceleration and displacement spectrum approaches

▪ Estimate the validity of the underling assumption behind 𝜅0



VS30 = 2100 m/s 

VS30 = 720 m/s 
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II. The study site

▌ The study site
▪ Seismicity: low-to-moderate

▪ Recording period: 21/2 years

▪ Instruments: 7 velocimeters et 2 accelerometers

▪ About 70 earthquakes usable for 𝜅𝑟 measurements

Velocimeter Accelerometer

Source : Woessner et al. (2015)



𝜅0_𝐴𝑆 𝜅0_𝐷𝑆
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III. Results and comparison between 𝜅𝐴𝑆 and 𝜅𝐷𝑆

▌ Comparison between 𝜅𝐴𝑆 and 𝜅𝐷𝑆

𝜅𝐴𝑆 : Anderson and Hough (1984) 𝜅𝐷𝑆 : Biasi and Smith (2001)
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The 𝑚𝜅 slope can be 

translated in crustal 

quality factor 𝑄𝜅 through:
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▪ The frequency dependence can explain a parts of the 

discrepancy between 𝑚𝜅_𝐴𝑆 and 𝑚𝜅_𝐷𝑆

▪ No quantifiable effect between 𝜅0_𝐴𝑆 and 𝜅0_𝐷𝑆
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▌ Frequency-dependence assumption
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IV. 𝜅 underlying assumptions validity
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Crustal and site amplification
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IV. 𝜅 underlying assumptions validity

▌ Negligible amplification influence assumption

▪ Non-negligible influence on 𝜅0 at rock sites

▪ Very probable and unpredictable influence on 𝜅0 at soil sites

1D simulation 

(Kennett 1974) at 

rock site P1

𝑓1 𝑓2

𝑓1 𝑓2𝑓1 𝑓2
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IV. 𝜅 underlying assumptions validity

▌ Negligible source influence assumption

𝑓1 𝑓2
▪ Same site (P1)

▪ Fixed frequency range [𝑓1 𝑓2]

▪ Very similar path

Jausiers cluster 

of events

Source : Bindi et al. (2017)

▪ 𝜅0 uncertainty controlled by the source term

▪ No quantifiable influence of the source on the average 𝜅0

231 inverted Fourier source 

spectra from the L’Aquila sequence



P1
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V. Conclusions

▌ Conclusions

▪ Consistent results between 𝜅0_𝐴𝑆 and 𝜅0_𝐷𝑆 at 

rock site, and in agreement with the literature

▪ For low-to-moderate seismicity areas, the 𝜅𝐷𝑆
approach is a promising alternative to the very 

uncertain VS30-𝜅0 correlations

▪ Very probable frequency-dependence of 𝜅

▪ Noticeable influence of the amplification on the average 

values of 𝜅0, even for rock sites

▪ Despite 𝜅0 is a site parameter, the uncertainty associated 

to its measurement is clearly and strongly dominated by 

the source term
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IV. 𝜅 underlying assumptions validity

▌ Negligible amplification influence assumption
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